
EE 508

Lecture 3

Filter Concepts/Terminology

Basic Properties of Electrical Circuits
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Is there a systematic way to design filters?
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Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

Must understand the real performance 

requirements

Obtain an acceptable approximating 

function

Design (synthesize) a practical circuit that 

has a transfer function close to the 

acceptable transfer function

• Many acceptable specifications for a given  

application

• Some much better than others

• But often difficult to obtain even one that is useful

• Many acceptable approximating functions for a 

given specification

• Some much better than others

• But often difficult to obtain even one!

• Many acceptable circuits for a given 

approximating function

Some much better than others

• But often difficult to obtain even one!

Important to make good decisions at each step in the filter design process 

because poor decisions will not be absolved in subsequent steps

Review from Last Time



Filter Concepts and Terminology

• A polynomial is said to be “integer monic” if the coefficient of the highest-

order term is 1

• If D(z) is integer monic, then N(z) and D(z) are unique

• If D(z) is integer monic, then the ak and bk terms are unique

• The roots of N(z) are termed the zeros of the transfer function

• The roots of D(z) are termed the poles of the transfer function

• If N(z) and D(z) are of orders m and n respectively, then there are m 

zeros and n poles in H(z)
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Filter Concepts and Terminology

XIN(s) XOUT(s)
( )T s

• Key Theorem:  The continuous-time  filter is stable iff all poles lie in the 

open left half of the s-plane

• Key Theorem:  The discrete-time  filter is stable iff all poles lie in the 

open unit circle

• The zeros of T(s) need not lie in the left half plane to maintain stability

• The zeros of H(z) need not lie in the open unit circle to maintain stability
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• Filter stability is of concern at the approximation stage of the filter design 

process

• Filter stability is required but not of concern at the synthesis stage for any useful 

filter (this concept is often misrepresented in the industry)

• Oscillators can be viewed at “unstable” filters

• An unstable filter will ultimately (and very quickly) either oscillate or latch up



Filter Concepts and Terminology

XIN(s) XOUT(s)
( )T s

( )1

1
T s  =  

s + 1

• Filter stability is of concern at the approximation stage of the filter design 

process

Two Approximations with Identical Magnitude Responses:

( )2

1
T s  =  

s - 1

( ) ( )1 2 2

1
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T j  = T j   =

+
 



• T1(s) is a stable approximation    T2(s) is an unstable approximation

Will a circuit that implements T2(s) oscillate?



• An s-domain rational fraction is termed minimum-phase if 
all poles and all zeros have a non-positive real part

• An s-domain rational fraction is minimum-phase if it has no 
poles or zeros in the RHP or on the imaginary axis

• A z-domain rational fraction is minimum-phase if the 
magnitude of all poles and zeros are less that 1

• A z-domain rational fraction is minimum-phase iff no poles 
or zeros lie on or outside of the unit circle

Filter Concepts and Terminology

Minimum Phase Property



Filter Concepts and Terminology

Measures

<    ≤               ≥    >? ?

How important is it to distinguish between these quantities when considering 

continuous-time filter concepts?

A filter is stable if the real part of the poles are in the left half-plane

A filter is stable if the real part of the poles are not in the right half-plane

P=α+jβFor example, consider a pole of a filter

α < 0

α ≤ 0
It is of no concern to distinguish between these two conditions !!



Filter Concepts and Terminology

Measures

<    ≤               ≥    >? ?

How important is it to distinguish between these quantities when considering 

continuous-time filter concepts?

Any point or any line in the complex plane 

is of Euclidian measure 0

No continuous-time filter has even been built that has had a pole or zero on the 

imaginary axis for anything longer than infinitely small time

The probability is 0 that a filter can ever be built that has a pole or zero on any 

predetermined line or at any predetermined point in the complex plane (for longer 

than infinitely small time)
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XIN(s) XOUT(s)
( )T s

• If T(s) is a rational fraction with poles and/or zeros in the RHP, then         

obtained by reflecting all RHP roots around the imaginary axis back into the 

LHP has the following properties
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Filter Concepts and Terminology

If H(z) is a rational fraction with poles and/or zeros outside the unit circle, 

then         obtained by reflecting all roots outside  the unit circle back into 

the unit circle by the complex conguate reciprocal reflection and then 

scaling the transfer function by the magnitude of the reciprocal of the root  

has the following properties
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XIN(s) XOUT(s)
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• Minimum Phase

• Stable

• Not minimum Phase
• Not stable

• Not minimum Phase
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Example:  Non-minimum Phase Transfer Function
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Beware that the arctan function is multi-valued and in CAD tools gives “a” 

principle value that may or may not consider the quadrant of the two arguments

Though the magnitude of the gain is 1, non-minimum phase filters are often 

used for phase adjustment



Example:  Non-minimum Phase Transfer Function
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Filter Concepts and Terminology
XIN(s) XOUT(s)
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Reflecting poles and zeros to maintain stability or establish minimum phase
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Not minimum Phase Minimum PhaseReflection

Note:  magnitude of real part is preserved in reflection, imaginary part remains unchanged
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Reflecting poles and zeros to maintain stability or establish minimum phase
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Note:  complex conjugate reciprocal reflection maintains angle but magnitude of 

reflected root is the reciprocal of the magnitude of the original root

Not minimum Phase Minimum PhaseReflection



Complex Conjugate Reciprocal 

Reflection
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Express X in polar form as 

The complex conjugate reciprocal reflection is 



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



2-nd order polynomial 

characterization
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with complex conjugate roots



2-nd order polynomial 

characterization

{a,b} {ωo,Q} {ζ, ωo} {p1,p2}

{α,β} {r,θ}

Alternate equivalent parameter sets

Widely used interchangeably

Easy mapping from one to another

Defined irrespective of whether polynomial appears in numerator or 

denominator of transfer function

If order is greater than 2, often multiple root pairing options so these 

parameter sets will not be unique for a given polynomial or transfer function

If cc roots exist, these will almost always be paired together (unique)
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• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Biquadratic Factorization
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If m or n is even, integer-monic polynomials N(s) or D(s)  can be expressed as
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If m or n is odd, integer-monic polynomials N(s) or D(s)  can be expressed as
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• These are termed quadratic factorizations

• If both N(s) and D(s) are expressed as quadratic 

factorizations,  quadratic pairs can be grouped to obtain a 

Biquadratic factorization  of T(s)



Biquadratic Factorization

In general, the biquadratic factorizations are not unique

Pole and zero pairings of realizable transfer functions 

can always be made so that all coefficients in the 

biquadratic factorizations are real

-If roots are real, multiple choices for first-order factor and remaining roots 

can be partitioned into groups of 2 in different ways

-Complex conjugate root pairs are generally grouped together so that all 

Coefficients are real



Biquadratic Factorization
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and where K is a real constant and all coefficients are real (some may be 0) 
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where

• Factorization is not unique

• H(z) factorizations not restricted to have m≤n

• Each biquatratic factor can be represented by any of the 6 alternative 

parameter sets in the numerator or denominator



Common Filter Architectures

T1(s)
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Cascaded Biquads

Leapfrog 

Multiple-loop Feedback

• Three classical filter architectures are shown

• The Cascaded Biquad and the Leapfrog approaches are most common

• The Cascaded Biquad structure follows directly from the Biquadratic Factorization



Common Filter Architectures

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

Cascaded Biquads

• Sequence in Cascade does not affect the approximation

• Sequence in Cascade often affects performance of actual implementations

• Different biquadratic factorizations will provide different performance

• Although some attention was given to the different alternatives for biquadratic

     factorization, a solid general formulation of the cascade sequencing problem

     or the biquadratic factorization problem never evolved

( ) 1 2 mT s T T T= • •



Stay Safe and Stay Healthy !



End of Lecture 3
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